3.170 \(\int \frac{x^6}{1-x^3+x^6} \, dx\)

Optimal. Leaf size=412 \[ -\frac{\left (3-i \sqrt{3}\right ) \log \left (2^{2/3} x^2+\sqrt [3]{2 \left (1-i \sqrt{3}\right )} x+\left (1-i \sqrt{3}\right )^{2/3}\right )}{18 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}-\frac{\left (3+i \sqrt{3}\right ) \log \left (2^{2/3} x^2+\sqrt [3]{2 \left (1+i \sqrt{3}\right )} x+\left (1+i \sqrt{3}\right )^{2/3}\right )}{18 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}}+x+\frac{\left (3-i \sqrt{3}\right ) \log \left (-\sqrt [3]{2} x+\sqrt [3]{1-i \sqrt{3}}\right )}{9 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}+\frac{\left (3+i \sqrt{3}\right ) \log \left (-\sqrt [3]{2} x+\sqrt [3]{1+i \sqrt{3}}\right )}{9 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}}+\frac{\left (-\sqrt{3}+i\right ) \tan ^{-1}\left (\frac{1+\frac{2 x}{\sqrt [3]{\frac{1}{2} \left (1-i \sqrt{3}\right )}}}{\sqrt{3}}\right )}{3 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}-\frac{\left (\sqrt{3}+i\right ) \tan ^{-1}\left (\frac{1+\frac{2 x}{\sqrt [3]{\frac{1}{2} \left (1+i \sqrt{3}\right )}}}{\sqrt{3}}\right )}{3 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}} \]

[Out]

x + ((I - Sqrt[3])*ArcTan[(1 + (2*x)/((1 - I*Sqrt[3])/2)^(1/3))/Sqrt[3]])/(3*2^(1/3)*(1 - I*Sqrt[3])^(2/3)) -
((I + Sqrt[3])*ArcTan[(1 + (2*x)/((1 + I*Sqrt[3])/2)^(1/3))/Sqrt[3]])/(3*2^(1/3)*(1 + I*Sqrt[3])^(2/3)) + ((3
- I*Sqrt[3])*Log[(1 - I*Sqrt[3])^(1/3) - 2^(1/3)*x])/(9*2^(1/3)*(1 - I*Sqrt[3])^(2/3)) + ((3 + I*Sqrt[3])*Log[
(1 + I*Sqrt[3])^(1/3) - 2^(1/3)*x])/(9*2^(1/3)*(1 + I*Sqrt[3])^(2/3)) - ((3 - I*Sqrt[3])*Log[(1 - I*Sqrt[3])^(
2/3) + (2*(1 - I*Sqrt[3]))^(1/3)*x + 2^(2/3)*x^2])/(18*2^(1/3)*(1 - I*Sqrt[3])^(2/3)) - ((3 + I*Sqrt[3])*Log[(
1 + I*Sqrt[3])^(2/3) + (2*(1 + I*Sqrt[3]))^(1/3)*x + 2^(2/3)*x^2])/(18*2^(1/3)*(1 + I*Sqrt[3])^(2/3))

________________________________________________________________________________________

Rubi [A]  time = 0.428322, antiderivative size = 412, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 8, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {1367, 1422, 200, 31, 634, 617, 204, 628} \[ -\frac{\left (3-i \sqrt{3}\right ) \log \left (2^{2/3} x^2+\sqrt [3]{2 \left (1-i \sqrt{3}\right )} x+\left (1-i \sqrt{3}\right )^{2/3}\right )}{18 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}-\frac{\left (3+i \sqrt{3}\right ) \log \left (2^{2/3} x^2+\sqrt [3]{2 \left (1+i \sqrt{3}\right )} x+\left (1+i \sqrt{3}\right )^{2/3}\right )}{18 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}}+x+\frac{\left (3-i \sqrt{3}\right ) \log \left (-\sqrt [3]{2} x+\sqrt [3]{1-i \sqrt{3}}\right )}{9 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}+\frac{\left (3+i \sqrt{3}\right ) \log \left (-\sqrt [3]{2} x+\sqrt [3]{1+i \sqrt{3}}\right )}{9 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}}+\frac{\left (-\sqrt{3}+i\right ) \tan ^{-1}\left (\frac{1+\frac{2 x}{\sqrt [3]{\frac{1}{2} \left (1-i \sqrt{3}\right )}}}{\sqrt{3}}\right )}{3 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}-\frac{\left (\sqrt{3}+i\right ) \tan ^{-1}\left (\frac{1+\frac{2 x}{\sqrt [3]{\frac{1}{2} \left (1+i \sqrt{3}\right )}}}{\sqrt{3}}\right )}{3 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}} \]

Antiderivative was successfully verified.

[In]

Int[x^6/(1 - x^3 + x^6),x]

[Out]

x + ((I - Sqrt[3])*ArcTan[(1 + (2*x)/((1 - I*Sqrt[3])/2)^(1/3))/Sqrt[3]])/(3*2^(1/3)*(1 - I*Sqrt[3])^(2/3)) -
((I + Sqrt[3])*ArcTan[(1 + (2*x)/((1 + I*Sqrt[3])/2)^(1/3))/Sqrt[3]])/(3*2^(1/3)*(1 + I*Sqrt[3])^(2/3)) + ((3
- I*Sqrt[3])*Log[(1 - I*Sqrt[3])^(1/3) - 2^(1/3)*x])/(9*2^(1/3)*(1 - I*Sqrt[3])^(2/3)) + ((3 + I*Sqrt[3])*Log[
(1 + I*Sqrt[3])^(1/3) - 2^(1/3)*x])/(9*2^(1/3)*(1 + I*Sqrt[3])^(2/3)) - ((3 - I*Sqrt[3])*Log[(1 - I*Sqrt[3])^(
2/3) + (2*(1 - I*Sqrt[3]))^(1/3)*x + 2^(2/3)*x^2])/(18*2^(1/3)*(1 - I*Sqrt[3])^(2/3)) - ((3 + I*Sqrt[3])*Log[(
1 + I*Sqrt[3])^(2/3) + (2*(1 + I*Sqrt[3]))^(1/3)*x + 2^(2/3)*x^2])/(18*2^(1/3)*(1 + I*Sqrt[3])^(2/3))

Rule 1367

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d^(2*n - 1)*(d*x)
^(m - 2*n + 1)*(a + b*x^n + c*x^(2*n))^(p + 1))/(c*(m + 2*n*p + 1)), x] - Dist[d^(2*n)/(c*(m + 2*n*p + 1)), In
t[(d*x)^(m - 2*n)*Simp[a*(m - 2*n + 1) + b*(m + n*(p - 1) + 1)*x^n, x]*(a + b*x^n + c*x^(2*n))^p, x], x] /; Fr
eeQ[{a, b, c, d, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1] && NeQ[m + 2*n
*p + 1, 0] && IntegerQ[p]

Rule 1422

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*
c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^n), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), In
t[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 - 4*a*c] ||  !IGtQ[n/2, 0])

Rule 200

Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Dist[1/(3*Rt[a, 3]^2), Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Di
st[1/(3*Rt[a, 3]^2), Int[(2*Rt[a, 3] - Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x]
 /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^6}{1-x^3+x^6} \, dx &=x-\int \frac{1-x^3}{1-x^3+x^6} \, dx\\ &=x-\frac{1}{6} \left (-3+i \sqrt{3}\right ) \int \frac{1}{-\frac{1}{2}+\frac{i \sqrt{3}}{2}+x^3} \, dx+\frac{1}{6} \left (3+i \sqrt{3}\right ) \int \frac{1}{-\frac{1}{2}-\frac{i \sqrt{3}}{2}+x^3} \, dx\\ &=x+\frac{\left (3-i \sqrt{3}\right ) \int \frac{1}{-\sqrt [3]{\frac{1}{2} \left (1-i \sqrt{3}\right )}+x} \, dx}{9 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}+\frac{\left (3-i \sqrt{3}\right ) \int \frac{-2^{2/3} \sqrt [3]{1-i \sqrt{3}}-x}{\left (\frac{1}{2} \left (1-i \sqrt{3}\right )\right )^{2/3}+\sqrt [3]{\frac{1}{2} \left (1-i \sqrt{3}\right )} x+x^2} \, dx}{9 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}+\frac{\left (3+i \sqrt{3}\right ) \int \frac{1}{-\sqrt [3]{\frac{1}{2} \left (1+i \sqrt{3}\right )}+x} \, dx}{9 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}}+\frac{\left (3+i \sqrt{3}\right ) \int \frac{-2^{2/3} \sqrt [3]{1+i \sqrt{3}}-x}{\left (\frac{1}{2} \left (1+i \sqrt{3}\right )\right )^{2/3}+\sqrt [3]{\frac{1}{2} \left (1+i \sqrt{3}\right )} x+x^2} \, dx}{9 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}}\\ &=x+\frac{\left (3-i \sqrt{3}\right ) \log \left (\sqrt [3]{1-i \sqrt{3}}-\sqrt [3]{2} x\right )}{9 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}+\frac{\left (3+i \sqrt{3}\right ) \log \left (\sqrt [3]{1+i \sqrt{3}}-\sqrt [3]{2} x\right )}{9 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}}-\frac{\left (3-i \sqrt{3}\right ) \int \frac{\sqrt [3]{\frac{1}{2} \left (1-i \sqrt{3}\right )}+2 x}{\left (\frac{1}{2} \left (1-i \sqrt{3}\right )\right )^{2/3}+\sqrt [3]{\frac{1}{2} \left (1-i \sqrt{3}\right )} x+x^2} \, dx}{18 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}-\frac{\left (3-i \sqrt{3}\right ) \int \frac{1}{\left (\frac{1}{2} \left (1-i \sqrt{3}\right )\right )^{2/3}+\sqrt [3]{\frac{1}{2} \left (1-i \sqrt{3}\right )} x+x^2} \, dx}{6\ 2^{2/3} \sqrt [3]{1-i \sqrt{3}}}-\frac{\left (3+i \sqrt{3}\right ) \int \frac{\sqrt [3]{\frac{1}{2} \left (1+i \sqrt{3}\right )}+2 x}{\left (\frac{1}{2} \left (1+i \sqrt{3}\right )\right )^{2/3}+\sqrt [3]{\frac{1}{2} \left (1+i \sqrt{3}\right )} x+x^2} \, dx}{18 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}}-\frac{\left (3+i \sqrt{3}\right ) \int \frac{1}{\left (\frac{1}{2} \left (1+i \sqrt{3}\right )\right )^{2/3}+\sqrt [3]{\frac{1}{2} \left (1+i \sqrt{3}\right )} x+x^2} \, dx}{6\ 2^{2/3} \sqrt [3]{1+i \sqrt{3}}}\\ &=x+\frac{\left (3-i \sqrt{3}\right ) \log \left (\sqrt [3]{1-i \sqrt{3}}-\sqrt [3]{2} x\right )}{9 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}+\frac{\left (3+i \sqrt{3}\right ) \log \left (\sqrt [3]{1+i \sqrt{3}}-\sqrt [3]{2} x\right )}{9 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}}-\frac{\left (3-i \sqrt{3}\right ) \log \left (\left (1-i \sqrt{3}\right )^{2/3}+\sqrt [3]{2 \left (1-i \sqrt{3}\right )} x+2^{2/3} x^2\right )}{18 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}-\frac{\left (3+i \sqrt{3}\right ) \log \left (\left (1+i \sqrt{3}\right )^{2/3}+\sqrt [3]{2 \left (1+i \sqrt{3}\right )} x+2^{2/3} x^2\right )}{18 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}}+\frac{\left (3-i \sqrt{3}\right ) \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+\frac{2 x}{\sqrt [3]{\frac{1}{2} \left (1-i \sqrt{3}\right )}}\right )}{3 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}+\frac{\left (3+i \sqrt{3}\right ) \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+\frac{2 x}{\sqrt [3]{\frac{1}{2} \left (1+i \sqrt{3}\right )}}\right )}{3 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}}\\ &=x+\frac{\left (i-\sqrt{3}\right ) \tan ^{-1}\left (\frac{1+\frac{2 x}{\sqrt [3]{\frac{1}{2} \left (1-i \sqrt{3}\right )}}}{\sqrt{3}}\right )}{3 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}-\frac{\left (i+\sqrt{3}\right ) \tan ^{-1}\left (\frac{1+\frac{2 x}{\sqrt [3]{\frac{1}{2} \left (1+i \sqrt{3}\right )}}}{\sqrt{3}}\right )}{3 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}}+\frac{\left (3-i \sqrt{3}\right ) \log \left (\sqrt [3]{1-i \sqrt{3}}-\sqrt [3]{2} x\right )}{9 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}+\frac{\left (3+i \sqrt{3}\right ) \log \left (\sqrt [3]{1+i \sqrt{3}}-\sqrt [3]{2} x\right )}{9 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}}-\frac{\left (3-i \sqrt{3}\right ) \log \left (\left (1-i \sqrt{3}\right )^{2/3}+\sqrt [3]{2 \left (1-i \sqrt{3}\right )} x+2^{2/3} x^2\right )}{18 \sqrt [3]{2} \left (1-i \sqrt{3}\right )^{2/3}}-\frac{\left (3+i \sqrt{3}\right ) \log \left (\left (1+i \sqrt{3}\right )^{2/3}+\sqrt [3]{2 \left (1+i \sqrt{3}\right )} x+2^{2/3} x^2\right )}{18 \sqrt [3]{2} \left (1+i \sqrt{3}\right )^{2/3}}\\ \end{align*}

Mathematica [C]  time = 0.0142571, size = 59, normalized size = 0.14 \[ \frac{1}{3} \text{RootSum}\left [\text{$\#$1}^6-\text{$\#$1}^3+1\& ,\frac{\text{$\#$1}^3 \log (x-\text{$\#$1})-\log (x-\text{$\#$1})}{2 \text{$\#$1}^5-\text{$\#$1}^2}\& \right ]+x \]

Antiderivative was successfully verified.

[In]

Integrate[x^6/(1 - x^3 + x^6),x]

[Out]

x + RootSum[1 - #1^3 + #1^6 & , (-Log[x - #1] + Log[x - #1]*#1^3)/(-#1^2 + 2*#1^5) & ]/3

________________________________________________________________________________________

Maple [C]  time = 0.008, size = 44, normalized size = 0.1 \begin{align*} x+{\frac{1}{3}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{6}-{{\it \_Z}}^{3}+1 \right ) }{\frac{ \left ({{\it \_R}}^{3}-1 \right ) \ln \left ( x-{\it \_R} \right ) }{2\,{{\it \_R}}^{5}-{{\it \_R}}^{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(x^6-x^3+1),x)

[Out]

x+1/3*sum((_R^3-1)/(2*_R^5-_R^2)*ln(x-_R),_R=RootOf(_Z^6-_Z^3+1))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} x + \int \frac{x^{3} - 1}{x^{6} - x^{3} + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^6-x^3+1),x, algorithm="maxima")

[Out]

x + integrate((x^3 - 1)/(x^6 - x^3 + 1), x)

________________________________________________________________________________________

Fricas [B]  time = 1.87502, size = 3906, normalized size = 9.48 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^6-x^3+1),x, algorithm="fricas")

[Out]

1/54*18^(2/3)*12^(1/6)*cos(2/3*arctan(sqrt(3) - 2))*log(18^(2/3)*12^(1/6)*sqrt(3)*x*sin(2/3*arctan(sqrt(3) - 2
)) - 3*18^(2/3)*12^(1/6)*x*cos(2/3*arctan(sqrt(3) - 2)) + 3*18^(1/3)*12^(1/3)*cos(2/3*arctan(sqrt(3) - 2))^2 +
 3*18^(1/3)*12^(1/3)*sin(2/3*arctan(sqrt(3) - 2))^2 + 18*x^2) + 2/27*18^(2/3)*12^(1/6)*arctan(-1/108*(6*18^(1/
3)*12^(5/6)*sqrt(3)*x*cos(2/3*arctan(sqrt(3) - 2)) - 108*sqrt(3)*cos(2/3*arctan(sqrt(3) - 2))^2 - 108*sqrt(3)*
sin(2/3*arctan(sqrt(3) - 2))^2 - 18*(18^(1/3)*12^(5/6)*x - 24*cos(2/3*arctan(sqrt(3) - 2)))*sin(2/3*arctan(sqr
t(3) - 2)) - sqrt(18^(2/3)*12^(1/6)*sqrt(3)*x*sin(2/3*arctan(sqrt(3) - 2)) - 3*18^(2/3)*12^(1/6)*x*cos(2/3*arc
tan(sqrt(3) - 2)) + 3*18^(1/3)*12^(1/3)*cos(2/3*arctan(sqrt(3) - 2))^2 + 3*18^(1/3)*12^(1/3)*sin(2/3*arctan(sq
rt(3) - 2))^2 + 18*x^2)*(18^(1/3)*12^(5/6)*sqrt(3)*sqrt(2)*cos(2/3*arctan(sqrt(3) - 2)) - 3*18^(1/3)*12^(5/6)*
sqrt(2)*sin(2/3*arctan(sqrt(3) - 2))))/(cos(2/3*arctan(sqrt(3) - 2))^2 - 3*sin(2/3*arctan(sqrt(3) - 2))^2))*si
n(2/3*arctan(sqrt(3) - 2)) - 1/27*(18^(2/3)*12^(1/6)*sqrt(3)*cos(2/3*arctan(sqrt(3) - 2)) - 18^(2/3)*12^(1/6)*
sin(2/3*arctan(sqrt(3) - 2)))*arctan(1/108*(6*18^(1/3)*12^(5/6)*sqrt(3)*x*cos(2/3*arctan(sqrt(3) - 2)) + 108*s
qrt(3)*cos(2/3*arctan(sqrt(3) - 2))^2 + 108*sqrt(3)*sin(2/3*arctan(sqrt(3) - 2))^2 + 18*(18^(1/3)*12^(5/6)*x +
 24*cos(2/3*arctan(sqrt(3) - 2)))*sin(2/3*arctan(sqrt(3) - 2)) - sqrt(18^(2/3)*12^(1/6)*sqrt(3)*x*sin(2/3*arct
an(sqrt(3) - 2)) + 3*18^(2/3)*12^(1/6)*x*cos(2/3*arctan(sqrt(3) - 2)) + 3*18^(1/3)*12^(1/3)*cos(2/3*arctan(sqr
t(3) - 2))^2 + 3*18^(1/3)*12^(1/3)*sin(2/3*arctan(sqrt(3) - 2))^2 + 18*x^2)*(18^(1/3)*12^(5/6)*sqrt(3)*sqrt(2)
*cos(2/3*arctan(sqrt(3) - 2)) + 3*18^(1/3)*12^(5/6)*sqrt(2)*sin(2/3*arctan(sqrt(3) - 2))))/(cos(2/3*arctan(sqr
t(3) - 2))^2 - 3*sin(2/3*arctan(sqrt(3) - 2))^2)) + 1/27*(18^(2/3)*12^(1/6)*sqrt(3)*cos(2/3*arctan(sqrt(3) - 2
)) + 18^(2/3)*12^(1/6)*sin(2/3*arctan(sqrt(3) - 2)))*arctan(1/216*(18^(1/3)*12^(5/6)*sqrt(3)*sqrt(2)*sqrt(-2*1
8^(2/3)*12^(1/6)*sqrt(3)*x*sin(2/3*arctan(sqrt(3) - 2)) + 3*18^(1/3)*12^(1/3)*cos(2/3*arctan(sqrt(3) - 2))^2 +
 3*18^(1/3)*12^(1/3)*sin(2/3*arctan(sqrt(3) - 2))^2 + 18*x^2) - 6*18^(1/3)*12^(5/6)*sqrt(3)*x + 216*sin(2/3*ar
ctan(sqrt(3) - 2)))/cos(2/3*arctan(sqrt(3) - 2))) - 1/108*(18^(2/3)*12^(1/6)*sqrt(3)*sin(2/3*arctan(sqrt(3) -
2)) + 18^(2/3)*12^(1/6)*cos(2/3*arctan(sqrt(3) - 2)))*log(18^(2/3)*12^(1/6)*sqrt(3)*x*sin(2/3*arctan(sqrt(3) -
 2)) + 3*18^(2/3)*12^(1/6)*x*cos(2/3*arctan(sqrt(3) - 2)) + 3*18^(1/3)*12^(1/3)*cos(2/3*arctan(sqrt(3) - 2))^2
 + 3*18^(1/3)*12^(1/3)*sin(2/3*arctan(sqrt(3) - 2))^2 + 18*x^2) + 1/108*(18^(2/3)*12^(1/6)*sqrt(3)*sin(2/3*arc
tan(sqrt(3) - 2)) - 18^(2/3)*12^(1/6)*cos(2/3*arctan(sqrt(3) - 2)))*log(-2*18^(2/3)*12^(1/6)*sqrt(3)*x*sin(2/3
*arctan(sqrt(3) - 2)) + 3*18^(1/3)*12^(1/3)*cos(2/3*arctan(sqrt(3) - 2))^2 + 3*18^(1/3)*12^(1/3)*sin(2/3*arcta
n(sqrt(3) - 2))^2 + 18*x^2) + x

________________________________________________________________________________________

Sympy [A]  time = 0.176818, size = 26, normalized size = 0.06 \begin{align*} x + \operatorname{RootSum}{\left (19683 t^{6} - 243 t^{3} + 1, \left ( t \mapsto t \log{\left (729 t^{4} - 9 t + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6/(x**6-x**3+1),x)

[Out]

x + RootSum(19683*_t**6 - 243*_t**3 + 1, Lambda(_t, _t*log(729*_t**4 - 9*_t + x)))

________________________________________________________________________________________

Giac [B]  time = 1.19542, size = 861, normalized size = 2.09 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^6-x^3+1),x, algorithm="giac")

[Out]

-1/9*(sqrt(3)*cos(4/9*pi)^4 - 6*sqrt(3)*cos(4/9*pi)^2*sin(4/9*pi)^2 + sqrt(3)*sin(4/9*pi)^4 + 4*cos(4/9*pi)^3*
sin(4/9*pi) - 4*cos(4/9*pi)*sin(4/9*pi)^3 + 2*sqrt(3)*cos(4/9*pi) + 2*sin(4/9*pi))*arctan(-((sqrt(3)*i + 1)*co
s(4/9*pi) - 2*x)/((sqrt(3)*i + 1)*sin(4/9*pi))) - 1/9*(sqrt(3)*cos(2/9*pi)^4 - 6*sqrt(3)*cos(2/9*pi)^2*sin(2/9
*pi)^2 + sqrt(3)*sin(2/9*pi)^4 + 4*cos(2/9*pi)^3*sin(2/9*pi) - 4*cos(2/9*pi)*sin(2/9*pi)^3 + 2*sqrt(3)*cos(2/9
*pi) + 2*sin(2/9*pi))*arctan(-((sqrt(3)*i + 1)*cos(2/9*pi) - 2*x)/((sqrt(3)*i + 1)*sin(2/9*pi))) - 1/9*(sqrt(3
)*cos(1/9*pi)^4 - 6*sqrt(3)*cos(1/9*pi)^2*sin(1/9*pi)^2 + sqrt(3)*sin(1/9*pi)^4 - 4*cos(1/9*pi)^3*sin(1/9*pi)
+ 4*cos(1/9*pi)*sin(1/9*pi)^3 - 2*sqrt(3)*cos(1/9*pi) + 2*sin(1/9*pi))*arctan(((sqrt(3)*i + 1)*cos(1/9*pi) + 2
*x)/((sqrt(3)*i + 1)*sin(1/9*pi))) - 1/18*(4*sqrt(3)*cos(4/9*pi)^3*sin(4/9*pi) - 4*sqrt(3)*cos(4/9*pi)*sin(4/9
*pi)^3 - cos(4/9*pi)^4 + 6*cos(4/9*pi)^2*sin(4/9*pi)^2 - sin(4/9*pi)^4 + 2*sqrt(3)*sin(4/9*pi) - 2*cos(4/9*pi)
)*log(-(sqrt(3)*i*cos(4/9*pi) + cos(4/9*pi))*x + x^2 + 1) - 1/18*(4*sqrt(3)*cos(2/9*pi)^3*sin(2/9*pi) - 4*sqrt
(3)*cos(2/9*pi)*sin(2/9*pi)^3 - cos(2/9*pi)^4 + 6*cos(2/9*pi)^2*sin(2/9*pi)^2 - sin(2/9*pi)^4 + 2*sqrt(3)*sin(
2/9*pi) - 2*cos(2/9*pi))*log(-(sqrt(3)*i*cos(2/9*pi) + cos(2/9*pi))*x + x^2 + 1) + 1/18*(4*sqrt(3)*cos(1/9*pi)
^3*sin(1/9*pi) - 4*sqrt(3)*cos(1/9*pi)*sin(1/9*pi)^3 + cos(1/9*pi)^4 - 6*cos(1/9*pi)^2*sin(1/9*pi)^2 + sin(1/9
*pi)^4 - 2*sqrt(3)*sin(1/9*pi) - 2*cos(1/9*pi))*log((sqrt(3)*i*cos(1/9*pi) + cos(1/9*pi))*x + x^2 + 1) + x